formulas
here have some important formula of algebra
Algebra is an important branch of mathematics. Here usually numbers of English alphabet a, b, x, y have to be calculated , Which we call variable. Many complex and large math can be solved very easily through this algebra . To do algebra we need to know some formulas .
QUESTION NO 1:-a+a=
formulas :-NO. 1 2a
QUESTION NO 2:-a+a+a=
formulas :-NO. 1 \(3\times a\)=3a
QUESTION NO 3:-a+a+a......... up to n=
formulas :-NO. 1 \(n\times a\)
QUESTION NO 4:-\(a\times a\)=
formulas :-NO. 1 \(a^{1+1}\) =\(a^{2}\)
QUESTION NO 5:-\(a\times a \times a \)=
formulas :-NO. 1 \(a^{1+1+1}\)= \(a^{3}\)
QUESTION NO 6:-\(a\times a \times a \)................... up to n =
formulas :-NO. 1 \(a^{n}\)
QUESTION NO 7:-\(a^{m}\times a^{n}\)=
formulas :-NO. 1 \(a^{m+n}\)
QUESTION NO 8:-\(a^{m}\div a^{n}\)=
formulas :-NO. 1 \(a^{m-n}\)
QUESTION NO 9:-\((a^{m})^{n}\)=
formulas :-NO. 1 \(a^{m\times n}\)
QUESTION NO 10:-\((ab)^{m}\)=
formulas :-NO. 1 \(a^{m}\times b^{m}\)
QUESTION NO 11:-\((\frac{a}{b})^{m}\)=
formulas :-NO. 1 \(\frac{a^{m}}{b^{m}}\)
QUESTION NO 12:-\((abc)^{m}\)=
formulas :-NO. 1 \(a^{m}\times b^{m}\times c^{m}\)
QUESTION NO 13:-\((a)^{0}\)=
formulas :-NO. 1 1 \(a\neq 0\)
QUESTION NO 14:-\(a^{m}\)=
formulas :-NO. 1 \(\frac{1}{a^{-m}}\)
QUESTION NO 15:-\(a^{-m}\)=
formulas :-NO. 1 \(\frac{1}{a^{m}}\)
QUESTION NO 16:-\(\sqrt[n]{a}\)=
formulas :-NO. 1 \(a^{\frac{1}{n}}\)
QUESTION NO 17:-\(\sqrt[n]{a^{m}}\)=
formulas :-NO. 1 \(a^{\frac{m}{n}}\)
QUESTION NO 18:-if is \(a^{m}=b^{m}\)
formulas :-NO. 1 then will be a=b
QUESTION NO 19:-if is \(a^{m}=a^{n}\)
formulas :-NO. 1 then will be m=n
QUESTION NO 20:-\((a+b)^{2}\)=
formulas :-NO. 1 \(a^{2}+2ab+b^{2}\)
formulas :-NO. 2 \((a-b)^{2}\)+4ab
QUESTION NO 21:-\(a^{2}+b^{2}=\)
formulas :-NO. 1 \((a+b)^{2}\)-2ab
formulas :-NO. 2 \((a-b)^{2}\)+2ab
QUESTION NO 22:-\((a+b+c)^{2}\)=
formulas :-NO. 1 \(a^{2}+b^{2}+c^{2}+2(ab+bc+ca)\)
QUESTION NO 23:-\(a^{2}+b^{2}+c^{2}\)=
formulas :-NO. 1 \((a+b+c)^{2}-2(ab+bc+ca)\)
QUESTION NO 24:-\((a-b)^{2}\)=
formulas :-NO. 1 \(a^{2}-2ab+b^{2}\)
formulas :-NO. 2 \((a+b)^{2}\)-4ab
QUESTION NO 25:-\(a^{2}-b^{2}=\)
formulas :-NO. 1 (a+b)(a-b)
QUESTION NO 26:-\((a+b)^{2}+(a-b)^{2}=\)
formulas :-NO. 1 \(2(a^{2}+b^{2})=\)
QUESTION NO 27:-\((a+b)^{2}-(a-b)^{2}=\)
formulas :-NO. 1 4ab
QUESTION NO 28:-2(ab+bc+ca)=
formulas :-NO. 1 \((a+b+c)^{2}-(a^{2}+b^{2}+c^{2})=\)
QUESTION NO 29:-ab=
formulas :-NO. 1 \((\frac{a+b}{2})^{2}-(\frac{a-b}{2})^{2}\)
QUESTION NO 30:-4ab=
formulas :-NO. 1 \((a+b)^{2}-(a-b)^{2}\)
QUESTION NO 31:-\((a+b)^{3}\)=
formulas :-NO. 1 \(a^{3}+3a^{2}b+3ab^{2}+b^{3}\)
formulas :-NO. 2 \(a^{3}+b^{3}+3ab(a+b)\)
QUESTION NO 32:-\((a-b)^{3}\)=
formulas :-NO. 1 \(a^{3}-3a^{2}b+3ab^{2}-b^{3}\)
formulas :-NO. 2 \(a^{3}-b^{3}-3ab(a-b)\)
QUESTION NO 33:-\(a^{3}+b^{3}\)=
formulas :-NO. 1 \((a+b)^{3}-3ab(a+b)\)
formulas :-NO. 2 \((a+b)(a^{2}-ab+b^{2})\)
QUESTION NO 34:-\(a^{3}-b^{3}\)=
formulas :-NO. 1 \((a-b)^{3}+3ab(a-b)\)
formulas :-NO. 2 \((a-b)(a^{2}+ab+b^{2})\)
QUESTION NO 35:-\((a+b+c)^{3}\)=
formulas :-NO. 1 \(a^{3}+b^{3}+c^{3}+3(a+b)(b+c)(c+a)\)
QUESTION NO 36:-\((a+b+c)^{3}\)=
formulas :-NO. 1 \(a^{3}+b^{3}+c^{3}+3(a+b)(b+c)(c+a)\)
Example 1:- 5a+7a= Ans:-12a ,
Example 2:- 3a+5a= Ans:-8a ,
Example 3:- 2a+5a= Ans:-7a ,
Example 4:- 2a+5b= Ans:-2a+5b , If this is the case, it cannot be added . Because the values of variable-a and variable-b are not the same . \(a\neq b\)
Example 5:- \(a + a^{2}\) , If this is the case, it cannot be added . Because the values of variable-a and variable-\(a^{2}\) are not the same . \(a\neq a^{2}\) .
Example 1:- 5a+7a+2a= Ans:-14a ,
Example 2:- 3a+5a+a= Ans:-9a ,
Example 3:- 2a+5a+10a= Ans:-17a ,
Example 4:- 2a+3a+2b= Ans:-5a+2b , If this is the case, it cannot be added . Because the values of a and b are not the same . \(a\neq b\)
Example 5:- 2a+3b+2c= Ans:-2a+3b+2c , If this is the case, it cannot be added . Because the values of a and b are not the same . \(a\neq b\) or \(a\neq c\) or \(b\neq c\)
Example 1:- \(a^{2}\times a^{5}\)=\(a^{2+5}\) =\(a^{7}\) , Powers must be added while multiplying .
Example 2:- \(a^{1}\times a^{7}\)=\(a^{1+7}\) =\(a^{8}\)
If the variables are equal during multiplication, then the powers of the variables have to be added (Sum).
Example 3:- \(7a^{1}\times 3a^{7}\)=\(7 \times 3 \times a^{1+7}\) =\(21a^{8}\) ,